Covariance of the number of real zeros of a random trigonometric polynomial
نویسندگان
چکیده
For random coefficients aj and bj we consider a random trigonometric polynomial defined as Tn(θ) = ∑n j=0{aj cos jθ + bj sin jθ}. The expected number of real zeros of Tn(θ) in the interval (0,2π) can be easily obtained. In this note we show that this number is in fact n/ √ 3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value for the covariance of the number of real zeros of the above polynomial in intervals (0,π) and (π,2π). It can be seen that our method in fact remains valid to obtain the result for any two disjoint intervals. The applicability of our method to the classical random trigonometric polynomial, defined as Pn(θ) = ∑n j=0 aj(ω)cos jθ, is also discussed. Tn(θ) has the advantage on Pn(θ) of being stationary, with respect to θ, for which, therefore, a more advanced method developed could be used to yield the results.
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملThe Real Zeros of a Random Polynomial with Dependent Coefficients
Abstract. Mark Kac gave one of the first results analyzing random polynomial zeros. He considered the case of independent standard normal coefficients and was able to show that the expected number of real zeros for a degree n polynomial is on the order of 2 π logn, as n → ∞. Several years later, Sambandham considered two cases with some dependence assumed among the coefficients. The first case ...
متن کاملLINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006